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The basic idea

Take J(X)=x?
Calculate

Definition: Bregman divergence

Let J be a convex differentiable function,

the Bregman divergence generated by J

between e, and e, (e dom J), is the non- .
negative quantity:

1 Dj(x.x5)

D,(e,.e,)=J(e)—J(e,)—(VI(e,). €, —&,) Not symmetric

No triangle inequality
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First properties of the Bregman divergence

Why IS it a positive quantity ? By definition of convexity and differentiability ,
J lies above its tangents

J(Y)=I(X)+{VI(X),x—Y)
Definition of subdifferential ~ 63 (e) ={p, J(d) = J(e)+(p,d —e) Vd e dom(J)}

What if J is affine ? D awsp (€1,62)=0

What if D (e1 ez) =0 and By contradiction, suppose €, # €, , for any 0<A<1
J y

J strictly convex? <D, (e,,e,)+(1-2)D, (e,.6,) =0

(x,. ) is J(x)+ affine function, hence is convex
(., X) is not always convex
Counter example J(x)=x3on IR*

Is D, (e4,e,) separately convex ? BJ
J
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First properties of the Bregman divergence (cont.)

What if J is quadratic (in IR") J(x)=x'Ax  Asymmetric positive
with associated matrix A ? DI (X, %) = (% — %, ) A%~ %,)

Mahalanobis distance

Whatis D ;5. ¢ 7
(J, F) convex functions D,...(e.8)=4D,(e,e,)+uD.(e,e,)

(A, 1) positive scalars

How is related D, to D; ? D, =D, Generating function differing
N J by an affine function
J(e)=J(e)-J(0)—(VI(0),e)

What is D;(e,0) D;(e,0)=3(e)

4 Bregman Divergences and Data Metrics 2- The Bregman divergence



Examples of Bregman divergences

Domain Generating function J(x) Bregman divergence D;(x, v) Name
IR" ||_:{||1 X—y ’ Euclidian Distance
IR" J(x)=xAx Asymmetric positive (x— }-‘)T A(x—y) Mahalanobis distance
X Kullback-Leibler
IR *n fo logx —x D xlog—-x +y, divergence or
y Relative Entropy
X, L, [takura-Saito discrete
1 — ——log—-1 TSRS
IR Z log Z . o5 v distance
X 1-x o
[0,1] xlogx+(1—x)log(l1—x) xlog—+(1-x)log Logistic loss
y I-y

Used in learning (speech recognition, image
classification, stochastic clustering, ...)
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Extensions of Bregman divergences

Non differentiable generating functions

When J s not differentiable at point e,, the definition would lead to a multivoque
function, since the subdifferential of J in e, is not reduced to a singleton

Definition: Extended Bregman Divergences
Let J be a convex, not necessarily differentiable function, the extended Bregman divergences
and generated by J between e, and e, (e dom J), are the non-negative quantities:

D+J(e1’e2): min J(el)_J(ez)_<p’e1_e2>E‘](el)_‘](ez)_<ﬁz’e1_e2> 1
peaol(e)
D7,(e,e,)= max J(el)—J(ez)—(p,el—e2>zJ(el)—J(eZ)—<Ez,e1—e2> D)
_ pedl(e,) = D {e.0)
with = —>
EZ: argmin ‘J(el)_‘](ez)_<p2’e1_e2>= arg max <p2’e1_eZ> ‘H“-n.
p, €dd(e,) p, €8I (e,) IS
[p = EMYITELS J(e)-J(e,) (P, —e,)= argmin (p,e -e,) Extended Bregman Divergences

p, € (e,) p, €dJ(e,) for  J(x) = ax®+|x|
The subdifferential is a closed convex set
the minimum and maximum exist

argmin and argmax belong to its boundary
6 Bregman Divergences and Data Metrics
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Symmetrized Bregman divergences (l)

Characterization of Symmetric Bregman Divergences
The Bregman Divergences are generally not symmetric

D,(e,e,)=J(e)—J(e,)—(VI(e,).e,—€,) & D,(e,,6)=13(e,)-J(e))—(VI(e).e,—¢)

Only Bregman Divergences generated by a quadratic function J are symmetric and they
also enjoy the triangle inequality (sub-additivity). They reduce then to Mahalanobis distances

Property: Characterization of symmetrical Bregman divergences

Let J be a strictly convex function, third differentiable on IR", the Bregman divergence generated by J
is symmetrical D, (e,, e,)= D, (e, &,), if and only if J is the sum of a quadratic Q(e) and a linear
function L(e). Furthermore D, = D, and D, satisfies the triangle inequality

Using 2(J(e)—J(e,)) =(VI(e) +VI(e,),e —e,) foranye,=eande,=0 2J(e) =(VI(0)+VI(e),e) Ve
and J(0)=0

Deriving VJ(e)=VJ(0)+(VVJI(e),e)
Replacing in to the symmetry condition ~ J(e) = (VJ (O),e)+%(VVJ (e).e,e) Ve
Deriving again(VVVJ (e).e.e,e)=0 Ve > J(e) = L(e) + Q(e) , L(e) =(VI(0),e) , Q(e) = %(VVJ (0).e,€)
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Symmetrized Bregman divergences (Il)

Two notions of Symmetrized Bregman Divergences

The more intuitive symmetrization is to define the symmetrized Bregman Divergences as

Dj (91’ ez) =D, (91’ ez) +D, (ez’ el) 7l
Definition: Symmetrized Bregman divergence

Let J be a convex differentiable function, the symmetrized
Bregman divergence generated by J between e, and e,
(e dom J), is the non-negative quantity:

Dj(el,ez)z(VJ (el)_VJ (e2)1e1_e2> b

But other definitions exist

Definition: Jensen-Bregman divergence
The Jensen-Bregman divergence generated by the strictly
convex function J, is:

JB; (x,y) = D, (x,

X+

)+ D, (y, 22

2 2
1 39 +3(y) (x+yj -
2 J ( y) 2 2 X (X %2)12
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Symmetrized Bregman divergences (lll)

Natural notion of Symmetrized Bregman Divergences

Calculate the following symmetrized Bregman Divergences

Syvminetrized Bregman
Divergence D?;(x, y)

Z(log X, = lOg yr_,x! o y:‘)

(x,—y,)
|

x!' }’i

Domain Generating function J(x) Name
IR™* Zx!_ logx —x, Symmetric Kullback-Leibler
IR™* Z —log x, Symmetric Itakura-Saito
[0,1] xlogx +(1—x)log(l—x) Symmetric loss function

x(1-y)
y(1-x)

(x—y)log

But, the symmetrized Bregman divergence, as a function '
of (e4,6,) is generally not separately convex

C. Ex.

J(X) =-sinx

Convex on [0, 7]
D, (x,0) = VJ(X).X = —XC0S X
Convex only on [0, 7] with

28in B + prcos fr =0

[ury

(]
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Bregman Gaps

Divergences for pairs of dual variables

When manipulating data from physics, one can have to deal with data pairs constituted by
dual variables (e,p), such that the duality product( p,e) is for example a work or a power.

Ex: Stress and strain (0,8) —> <0',§> =g:¢
Flux and Temperature (q,
Definition: Bregman gap

Let J be a convex, not necessarily differentiable function, the Bregman gap BG, generated by
J between e, and the pair of dual quantities (e,, p,), p, € 0J(e,) Is the non-negative quantity:

BG, (el’[eZ’ pz]) =J(e)-J(e,) _<p2’el _ez>

Definition: Symmetrized Bregman gap
The Symmetrized Bregman gap generated by the convex function J between the two pairs
of dual quantities (e, p,) and (e,, p,), , iS the nonnegative scalar :

BGj ([el’ p1]1[ezl pz]) = BGJ (el’[eZ’ pz])+ BGJ (eZ’[el’ pl])
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Properties of Bregman Gaps

1- Separate convexity of the symmetrized Bregman gap

v ([e,, p,1.[e,, p,1.[&, P, ])
BG; (Ale,, p,]+ (1- Ale,, p,1.[e,, P,]) < ABG; ([e,, p.].[&, P, 1) + (1— 2)BG; ([e,, p,1.[e,, P,1)??

Consider the two functions of 4 T (A) = (16, +(1-2)e, —&,Ap, +(1-2)p, — P,)
G(/I) = ﬂ’<el —€ P — p0>+(1_ﬂ“)<ez — € P, — po>

Show that the function f(/)=F(/)-G(/) is negative along the segment [0,1] and notice that f(0)=0
The derivative of fis ~ f'(1) = (24—1)(e,—e,, p,— p,)=C(24-1) C=>0
And fcan be calculated as T (1) =CA(A-1)(e, —e,, p,—p,)<0 for1e[0,1]

2- If Jis differentiable, symmetrized Bregman gap = symmetrized Bregman divergence:
BG; ([e., VI (e,)].[e,, VI (&,)]) = D5 (e,.6,)

3- Alternative form of BG* BG; ([e,, p.1.[e,, p,]) =(p. - P,.6,—&,)

4- If in addition J is quadratic then: BG; ([e,, p,1.[e,, p,]) = 2J (e, —&,)
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Symmetrized Bregman divergences & Bregman Gaps

Non differentiable generating functions - Regularization

Consider the loss function used in robust statistic J (x) =|x| as the generating function
(as is given rise to better robustness to outliers, cf. Linear Regression !)

Calculate the symmetrized Bregman divergence and the symmetrized Bregman gap generated

s - . _2|x-y if sign(x) = sign(y) .
BG; ([x,sign(x)].[y,sign(y)]) = 0| | [ S0 — i) if |x||y|=0

BG; ([x,sign(x)].[0, p]) = (sign(x) — p)x pe[-11] {D? )= ‘%x— y| if sign(x) = sign(y)

it sign()=sign(y) OIX¥=0
D} (x,0)=0

What if one use the regularized version of the loss function J_(X) = VX2 + & | limit when ¢ —07?

1 -

. s X y
. & [\/x2 +e? Gy +é J

2

0,1 = s (0)0va

71I,5 7‘1 —C:,S o] 0,‘5 1I 1,I5
Hinge loss and regularized hinge loss (£=0.1)
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Thanks for your attention
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